首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2516篇
  免费   178篇
  国内免费   51篇
  2024年   2篇
  2023年   37篇
  2022年   38篇
  2021年   92篇
  2020年   81篇
  2019年   148篇
  2018年   90篇
  2017年   57篇
  2016年   61篇
  2015年   124篇
  2014年   211篇
  2013年   262篇
  2012年   175篇
  2011年   177篇
  2010年   119篇
  2009年   97篇
  2008年   67篇
  2007年   100篇
  2006年   80篇
  2005年   71篇
  2004年   65篇
  2003年   74篇
  2002年   46篇
  2001年   44篇
  2000年   28篇
  1999年   29篇
  1998年   27篇
  1997年   22篇
  1996年   22篇
  1995年   27篇
  1994年   34篇
  1993年   25篇
  1992年   30篇
  1991年   26篇
  1990年   27篇
  1989年   23篇
  1988年   22篇
  1987年   13篇
  1986年   9篇
  1985年   11篇
  1984年   8篇
  1983年   7篇
  1982年   10篇
  1981年   7篇
  1980年   5篇
  1979年   2篇
  1978年   2篇
  1976年   4篇
  1972年   1篇
  1970年   2篇
排序方式: 共有2745条查询结果,搜索用时 31 毫秒
31.
Ubiquitin-mediated proteolysis is a key regulatory process in cell cycle progression. The Skp1-Cul1-F-box (SCF) and anaphase-promoting complex (APC) ubiquitin ligases target numerous components of the cell cycle machinery for destruction. Throughout the cell cycle, these ligases cooperate to maintain precise levels of key regulatory proteins, and indirectly, each other. Recently, we have identified the deubiquitinase USP37 as a regulator of the cell cycle. USP37 expression is cell cycle-regulated, being expressed in late G1 and ubiquitinated by APCCdh1 in early G1. Here we report that in addition to destruction at G1, a major fraction of USP37 is degraded at the G2/M transition, prior to APC substrates and similar to SCFβTrCP substrates. Consistent with this hypothesis, USP37 interacts with components of the SCF in a βTrCP-dependent manner. Interaction with βTrCP and subsequent degradation is phosphorylation-dependent and is mediated by the Polo-like kinase (Plk1). USP37 is stabilized in G2 by depletion of βTrCP as well as chemical or genetic manipulation of Plk1. Similarly, mutation of the phospho-sites abolishes βTrCP binding and renders USP37 resistant to Plk1 activity. Expression of this mutant hinders the G2/M transition. Our data demonstrate that tight regulation of USP37 levels is required for proper cell cycle progression.  相似文献   
32.
To observe cellular membranous systems under a light microscope, we modified Mayer's tannic acid-ferric chloride stain method by adding a treatment with hematoxylin after the original procedure. We used the modified tannic acid-ferric chloride (MTA-Fe) stain method to examine kidneys, liver, heart, trachea, epididymides and other organs of rats and dogs. The MTA-Fe stain clearly demonstrated the basement membrane, brush border, basolateral invaginations and cell processes in the kidneys which enabled easy differentiation of the S1 and S3 segments of proximal convoluted tubules. Our technique also demonstrated hepatic cell membranes and bile canaliculi in the liver, cross striations and longitudinal traveling of myofibrils in the heart, cilia of the epithelial cells in the trachea, and stereocilia and terminal bars in the epididymis. The MTA-Fe stain is a convenient method to visualize cellular membranous systems even for light microscopy. The stain has the advantages of using no toxic materials, simple and easy technique, little variation of staining results, and little fading for several months after staining.  相似文献   
33.
Abstract

The aim of this study was to investigate whether N-acetylcysteine (NAC), a known antioxidant, can protect kidney against ischemic injury through regulating Nrf2 signaling pathway. The expression of Nrf2, HO-1 and cleaved caspase 3 were analyzed by Western blot analysis. Apoptosis of renal tubular epithelial cells was assessed by the TUNEL method. Malondialdehyde (MDA) levels were measured by the thiobarbituric acid reaction. Blood serum creatinine and blood urea nitrogen levels were measured with an Olympus automatic multi-analyzer. We found that NAC significantly increased Nrf2 and downstream HO-1 expression. Furthermore, NAC significantly decreased cleaved caspase 3, p53 and renal epithelial tubular cell apoptosis. In addition, NAC reduced the MDA level. These findings suggest that the protective action of NAC on ischemia renal injury is associated closely with Nrf2 signaling pathway.  相似文献   
34.
The aim of this study was the investigation of HSA properties and its structural changes after modification induced in vivo among patients with CRF who underwent haemodialysis. Application of different fluorescent dyes allowed the investigation of different regions of albumin molecule using ANS, bis-ANS, piren, piren maleimide and fluorescein isothiocyanate. As markers of oxidative modification, the total protein thiol, carbonyls, glycosylated plasma proteins and hydroperoxide were estimated in plasma. Additionally, this study investigated plasma viscosity and total antioxidant capacity (TAC) of the plasma. Results show that haemodialysis provoked significant changes in conformational properties of plasma albumin, which resulted in the loss of its biological functions. These findings suggest that oxidative stress and glycation of proteins in plasma are developed during haemodialysis. The results depict that one of the features of uraemia is the presence of signs of oxidative stress before haemodialysis. Nevertheless, oxidative stress and glycation of proteins in plasma are exacerbated during haemodialysis and are a complex process.  相似文献   
35.
The minichromosome maintenance (MCM) complex is a replicative helicase, which is essential for chromosome DNA replication. In recent years, the identification of a novel MCM-binding protein (MCM-BP) in most eukaryotes has led to numerous studies investigating its function and its relationship to the MCM complex. However, the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood; in addition, the functional role of MCM-BP remains controversial and may vary between model organisms. The present study aims to elucidate the nature and biological function of the MCM-BP ortholog, Mcb1, in fission yeast. The Mcb1 protein continuously interacts with MCM proteins during the cell cycle in vivo and can interact with any individual MCM subunit in vitro. To understand the detailed characteristics of mcb1+, two temperature-sensitive mcb1 gene mutants (mcb1ts) were isolated. Extensive genetic analysis showed that the mcb1ts mutants were suppressed by a mcm5+ multicopy plasmid and displayed synthetic defects with many S-phase-related gene mutants. Moreover, cyclin-dependent kinase modulation by Cig2 repression or Rum1 overproduction suppressed the mcb1ts mutants, suggesting the involvement of Mcb1 in pre-RC formation during DNA replication. These data are consistent with the observation that Mcm7 loading onto replication origins is reduced and S-phase progression is delayed in mcb1ts mutants. Furthermore, the mcb1ts mutation led to the redistribution of MCM subunits to the cytoplasm, and this redistribution was dependent on an active nuclear export system. These results strongly suggest that Mcb1 promotes efficient pre-RC formation during DNA replication by regulating the MCM complex.  相似文献   
36.
37.
Circular RNAs are a class of widespread and diverse endogenous RNAs that may regulate gene expression in various diseases, but their regulation and function in hypertensive renal injury remain unclear. In this study, we generated ribosomal‐depleted RNA sequencing data from normal mouse kidneys and from injured mouse kidneys induced by deoxycorticosterone acetate‐salt hypertension and identified at least 4900 circRNA candidates. A total of 124 of these circRNAs were differentially expressed between the normal and injured kidneys. Furthermore, we characterized one abundant circRNA, termed circNr1h4, which is derived from the Nr1h4 gene and significantly down‐regulated in the injured kidneys. RNA sequencing data and qPCR analysis also showed many microRNAs and mRNAs, including miR‐155‐5p and fatty acid reductase 1 (Far1), were differentially expressed between the normal and injured kidney and related to circNr1h4. In vitro, the silencing of circNr1h4 or overexpression of miR‐155‐5p significantly decreased Far1 levels and increased reactive oxygen species. Mechanistic investigations indicated that circNr1h4 acts as a competing endogenous RNA for miR‐155‐5p, leading to regulation of its target gene Far1. Our study provides novel insight into the molecular mechanisms underlying kidney injury in hypertension, which will be required to develop therapeutic strategies of targeting circRNAs for hypertensive kidney injury.  相似文献   
38.
Abstract A novel procedure was used to purify a cytosolic chitinase from Candida albicans to electrophoretic homogeneity. The results represent the first demonstration of the purification of a fungal intracellular chitinase using the criterion of a single band detected following silver-staining of a polyacrylamide gel run under denaturing conditions. Purified chitinase had pH and temperature optima of 5.0 and 50°C, respectively. Inhibition of enzyme activity by allosamidin was pH-dependent occuring maximally at pH 8.0. Phospholipids had similar marked and highly specific effects on the activities of both the purified soluble enzyme and a solubilized microsomal chitinase from C. albicans . Evidence is provided for the existence of a complex chitinolytic system in this organism.  相似文献   
39.
The genus Mononychellus is represented by 28 herbivorous mites. Some of them are notorious pests of cassava (Manihot esculenta Crantz), a primary food crop in the tropics. With the exception of Mononychellus tanajoa (Bondar), their geographic distribution is not widely known. This article therefore reports observational and specimen-based occurrence data of Mononychellus species associated with cassava. The dataset consists of 1,513 distribution records documented by the International Center for Tropical Agriculture (CIAT) between 1975 and 2012. The specimens are held at CIAT’s Arthropod Reference Collection (CIATARC). Most of the records are from the genus’ native range in South America and were documented between 1980 and 2000. Approximately 61% of the records belong to M. tanajoa, 25% to M. caribbeanae (McGregor), 10% to M. mcgregori (Flechtmann and Baker) and 2% to M. planki (McGregor). The complete dataset is available in Darwin Core Archive format via the Global Biodiversity Information Facility (GBIF).  相似文献   
40.
The three-component toluene dioxygenase system consists of an FAD-containing reductase, a Rieske-type [2Fe-2S] ferredoxin, and a Rieske-type dioxygenase. The task of the FAD-containing reductase is to shuttle electrons from NADH to the ferredoxin, a reaction the enzyme has to catalyze in the presence of dioxygen. We investigated the kinetics of the reductase in the reductive and oxidative half-reaction and detected a stable charge transfer complex between the reduced reductase and NAD+ at the end of the reductive half-reaction, which is substantially less reactive toward dioxygen than the reduced reductase in the absence of NAD+. A plausible reason for the low reactivity toward dioxygen is revealed by the crystal structure of the complex between NAD+ and reduced reductase, which shows that the nicotinamide ring and the protein matrix shield the reactive C4a position of the isoalloxazine ring and force the tricycle into an atypical planar conformation, both factors disfavoring the reaction of the reduced flavin with dioxygen. A rapid electron transfer from the charge transfer complex to electron acceptors further reduces the risk of unwanted side reactions, and the crystal structure of a complex between the reductase and its cognate ferredoxin shows a short distance between the electron-donating and -accepting cofactors. Attraction between the two proteins is likely mediated by opposite charges at one large patch of the complex interface. The stability, specificity, and reactivity of the observed charge transfer and electron transfer complexes are thought to prevent the reaction of reductaseTOL with dioxygen and thus present a solution toward conflicting requirements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号